

Modeling Health Insurance Coverage Estimates for Minnesota Counties

Peter Graven

State Health Access Data Assistance Center (SHADAC)

University of Minnesota, School of Public Health

Minnesota Health Services Research Conference March, 6, 2012

Supported by a grant from The Robert Wood Johnson Foundation

Acknowledgements

- Co-author: Joanna Turner, MS
- Project supervision: Kathleen Call, PhD
- Statistical consultation: Sudipto Banarjee, PhD
- Thanks to the Minnesota Department of Health, Health Economics for their support of this work
- Special thanks to Gestur Davidson, PhD for encouraging Bayesian modeling at SHADAC

Background

- Minnesota Health Access Survey (MNHA)
 - Telephone survey conducted every 2 years
 - Provides MN and regional estimates, including estimates for select populous counties and cities
 - County level estimates are frequently requested data
- American Community Survey (ACS)
 - Estimates available for all PUMAs (Public Use Microdata Areas)
 - Estimates available for 12 Minnesota counties (out of 87)
- Small Area Health Insurance Estimates Program (SAHIE)
 - 2007 estimates for all 87 Minnesota counties
 - 2009 estimates are now available but not examined in this edition of the model

Background

Minnesota geographies and data availability

Research Objective

- Produce Minnesota uninsurance rates by county for 2009
 - Use the Minnesota Health Access Survey (MNHA)
 - Use other sources of uninsurance estimates
 - Include estimates of uncertainty
 - Allow for future input sources
 - Create methodology that is incrementally observable
 - Use methods that can be applied to other states

Methodology Overview

MNHA SAE: Model

Estimates come from normal distribution

$$y_c^{MNHA-direct} \sim N\left(\overline{y_c}, \frac{1}{\tau}\right)$$

Model the mean using covariates X and error

$$\overline{y_c} = \alpha + \beta X + v_c$$

Error is correlated spatially with neighbors

$$v_c|v_{-c}, \sigma_v^2 \sim N\left(\sum_{j \in \delta_c} \frac{v_j}{|\delta_c|}, \frac{\sigma_v^2}{|\delta_c|}\right)$$

MNHA SAE: Model Parameters

<u>Parameters</u>	<u>Prior</u>	<u>Median</u>	<u>SE</u>
Percent Moved into State, 2005-2009	$N(0,1/1\times10^6)$	1.501	0.6422
Percent White, 2005-2009	$N(0,1/1\times10^6)$	-0.3024	0.1143
Percent HHLDS 65 and Over, 2005-2009	$N(0,1/1\times10^6)$	0.2638	0.1089
Percent of Population Growth, 2000-2009	$N(0,1/1\times10^6)$	-2.643	0.9837
Percent Land in Farms, 2007	$N(0,1/1\times10^6)$	0.05293	0.02414
Percent Employed Working in Retail, 2009	$N(0,1/1\times10^6)$	0.5771	0.244
Average Unemployment Rate, 2009	$N(0,1/1\times10^6)$	2.102	0.3965
Weekly Wage, 2009	$N(0,1/1\times10^6)$	0.02775	0.007752
Constant	$N(0,1/1\times10^6)$	-16.63	13.36
Precision v	$\Gamma(0.001, 0.001)$	2.262	94.55
Precision $ au$	$\Gamma(0.001, 0.001)$	0.03686	0.006257
	DIC	541.9	

Pd

7.788

ACS County Model

- County estimate from 1-year ACS (12 counties)
 - Estimate and SE used directly
- County is a subset of PUMA (75 counties)
 - Use the relationship between puma and county for the poverty rate to estimate the county given a puma uninsurance rate using equations 1-3
 - 1) $Unin_c^{puma} = \beta_0 + \beta_1 Pov_c^{puma}$; c = 1, 2, ..., 87
 - 2) $Pov_diff_c^{puma} = Pov_c^{County} Pov_c^{puma}$
 - 3) $unin_c^{county} = Unin_c^{puma} + \beta_1 Pov_diff_c^{puma}$
 - SE is the PUMA estimate times the ratio of the PUMA poverty SE divided by the county poverty SE

$$unin_se_c^{county} = unin_se_c^{puma} \sqrt{\left(\frac{pov_se_c^{county}}{pov_se_c^{puma}}\right)}$$

SAHIE Estimate & Adjustment

- Census Bureau's Small Area Health Insurance Estimates (SAHIE) program produces modelbased estimates of health insurance coverage
- Estimates are for 0-64 so we need to make a correction to use in our all ages model

```
\begin{aligned} Unin_{All}^{SAHIE} &= Unin_{under65}^{SAHIE} - \left(Unin_{under65}^{SAHIE} * Unin_{under65}^{SAHIE}\right) \\ &+ \left(Prop65over^{ACS5year} * Unin_{65over}^{CPS}\right) \end{aligned}
```


Simultaneous Equation Model (SEM)

Each survey-county estimate from a normal distribution

$$y_{sc} \sim N(u_{sc}, \tau_{sc}^u)$$

 The precision is a survey term times a surveycounty specific error

$$\tau_{sc}^u = \tau_s * \tau_{sc}^\tau$$

The survey-county error is the inverse of the estimate's variance

$$\tau_{SC}^{\tau} = \frac{1}{\sigma_{SC}^2}$$

Simultaneous Equation Model (SEM)

$$u_c^{MNHA_SAE_2009} = \alpha_1 + \beta_c \ County_c$$
 $u_c^{ACS_2009} = \alpha_2 + \beta_c \ County_c$
 $u_c^{ACS_2008} = \alpha_3 + \beta_c \ County_c$
 $u_c^{SAHIE_2007} = \alpha_4 + \beta_c \ County_c$

$$y_c^{SEM} = (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)/4 + \beta_c \ County_c \longrightarrow \text{Prediction}$$

Specifications

- Single Markov Chain Monte Carlo
- 20k production cycles after 1,000 burn-in iterations

SEM: Model Parameters

<u>Parameters</u>		<u>Prior</u>	<u>Median</u>	<u>SD</u>
$lpha_{MNHA_SAE_2009}$		$N(0,1/1\times10^6)$	30.49	8.282
$lpha_{ACS_2009}$		$N(0,1/1\times10^6)$	29.77	8.282
$lpha_{ACS_2008}$		$N(0,1/1\times10^6)$	29.4	8.283
$lpha_{SAHIE_2007}$		$N(0,1/1\times10^6)$	29.7	8.281
eta_{1-87}		$N(0,1/1\times 10^6)$	-23.9415.21	8.29-8.428
τ		$\Gamma(0.001, 0.001)$	0.5335	0.04714
	DIC		1558	
	Pd		91.27	

SD: Standard Deviation

Methodology Limitations/Enhancements

- MNHA SAE model could include more advanced variable selection and transformations of covariates
- MNHA SAE model could take advantage of information outside the state (eg. US counties)
- Assumptions about PUMA to county relationships for ACS are not currently testable
- SEM Model excludes non-parametric errors
 - Integrated model could propagate errors more accurately but sacrifice conceptual simplicity

Model Results - Percent Uninsured

Model Results: Posterior Density

Model Results - Uncertainty

Coefficient of Variation

$$CV = \frac{SD}{EST}$$

Model Results: Input Comparison

Conclusion

- Produced uninsurance estimates and estimates of uncertainty using a state survey and multiple input sources
- Methodology is accessible and can be applied to other states and new input sources
- Results are important for states who need to prepare for changes under health reform

