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Motivation

« The public’s knowledge of the ACA is poor

« As of January 2014, 46% of the uninsured did not know
about the availability of financial help for coverage

« QOverall, the first open enrollment season was
successful

« But lots of variation across the states and a long way to
go
* Success during the 2" season will depend on
outreach
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Outreach

 Blanket media campaigns might not be enough
« Need to target the uninsured

« To do that efficiently
* Need to know where the uninsured are
« What kind of communities they live in

« What institutions are present in the local community that
can serve as access points
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Research Objective

« PROBLEMS:

« Small Area Health Insurance Estimates
(SAHIE) are not granular enough

« Direct zip code level estimates (ACS) can be
unreliable

« Accessing the data can be difficult

« GOALS:
« Improve access to ZIP Code level estimates
« Improve reliability of ZIP Code level estimates
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BACKGROUND
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American Community Survey (ACS)

« General household survey conducted by the U.S. Census Bureau
«  Mandatory survey in 4 modes (mail, internet, phone, in person)
«  Collects sample in all counties or county equivalents in the U.S. every year

« Replacement for the “long form” of the decennial census

«  Collects detailed economic, social, demographic, and housing information
annually instead of once every ten years

«  Collects information on health insurance status information at time of survey
(produces point in time insurance estimate)
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Identify Location of Potentially Eligible
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Counties - Reliability

Minnesota Percent Uninsured Estimates by County
« ACS 2008-2012

« Highest RSE Is 18.4%

« Average RSE is 8.0%

« Average RSE top ten (sample size) counties 3.7%

« Average RSE bottom ten (sample size) counties 12.2%
« SAHIE 2011

« Highest RSE Is 7.9%

« Average RSE is 6.0%

« Average RSE top ten (sample size) counties 5.1%

« Average RSE bottom ten (sample size) counties 6.3%
Note: RSE is relative standard error (standard error/estimate)
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ZCTAs — Reliability

Non-Zero Percent Uninsured Estimates in Minnesota
« Highest RSE Is 174%

« Average RSE is 27.6%

« Thirty percent of RSEs>28%

« Seven percent of RSEs>50%

« N=890

Non-Zero Percent Uninsured Estimates in U.S.
« Highest RSE iIs 509%

« Average RSE is 27.6%

« Thirty percent of RSES>31%

« Eleven percent of RSES>50%

« N=33,000
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05% confidence intervals for ZCTA
estimates with RSEs >50%: MN

oo

Pr(Uninsured)
.6

4

2

0
! !
»
|
:



METHODS
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Two Methods for improving precision

 Conditional Auto-Regressive Model (CAR)

« Advantages: Established method in the statistics literature

« Disadvantages: High level of complexity, difficult to scale and
apply to other types of estimates

« Modifled Composite Method

« Advantages: Easy to scale and apply to different types of
estimates

« Disadvantages: New approach so not peer reviewed
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CAR Model

« Auxiliary data (covariates) improves prediction
s np=a+pX,+tv,

« Borrows strength from neighbors
« Creates term for average value of adjacent neighbors
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Composite Model

« Rough approximation of a composite estimator

Comp,. = wt,. * ZIPRATE,. + (1 — wt,.) * COUNTY,

where wt=weight

wt,. = (County, — ZIPRATE,.)*/Total Error,,

Total Error,, = (County, — ZIPRATE,.)* + SE?,,

See Rao (2003)



Composite Model Intuition

Difference County and ZCTA

Low High

Leans toward ZCTA

Low

Leans toward county

SE of ZCTA
High



Model Results

95%
CAR Model Results Coef. Credible Interval
% White -0.02  (-0.02,-0.017)
% Living w/Kids -0.01  (-0.016,-0.009)
SD of Spatial Effects 0.32
Composite Model Mean SD
Weight 53 32



Comparison of Methods

Average across estimates: Minnesota

Direct CAR Composite

Rate, % 9.3 9.5 9.1
SE 2.6 1.1 1.6
RSE, % 27.6 11.1 20.9
RSE>30, % 28.7 0.1 11.2
RSE>50, % 8.5 0.1 3.4



Distributions by Sample Size
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Which method Is better?

--

Complexity High

Scalability Easy Hard Easy

Reliability Not very reliable Very reliable More reliable but
still not great

Bias ? ? ?
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Minnesota: Comparing Estimates

CAR Model Estimates

) Composite Model Estimates
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Start with the Coun
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Then look at ZCTA estimates
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Findings

Providing uninsurance estimates at the ZCTA level is problematic both
from the standpoint of reliability and accessibility

Possible solutions to the problem of reliability is to use small area
methods such as CAR or a moderated composite estimator

CAR is the more established method and provides more reliable
estimates but is complex and difficult to scale

A potential compromise is to use the modified composite estimator but
more testing is needed

Interactive mapping can make these estimates available at the ZCTA
level
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